
 IJESR Volume 2, Issue 4 ISSN: 2347-6532
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering & Scientific Research
http://www.ijmra.us

155

April
2014

An Efficient and Extend B-twig Pattern for

XML Query Processing

Santhosh Kumar KP
*

T.Kumesh
**

Abstract—

Twig pattern matching is a critical operation for XML query processing, and theholistic

computing approach has shown superior performance over other methods. Since Bruno et al.

introduced the first holistic twig join algorithm, TwigStack, numerous so-called holistic twig join

algorithms have been proposed. Yet practical XML queries often require support for more

general twig patterns, such as the ones that allow arbitrary occurrences of an arbitrary number of

logical connectives (AND, OR, and NOT); such types oftwigs are referred to as B-twigs (i.e.,

Boolean-Twigs) or AND/OR/NOT-twigs. We have seen interesting work on generalizing

theholistic twig join approach to AND/OR-twigs and AND/NOT-twigs, but have not seen any

further effort addressing the problem of AND/OR/NOT-Twigs along with XOR twig at the full

scale, which therefore forms the main theme of this paper. In this paper, we investigate novel

mechanisms for efficient B-twig pattern matching. In particular, we introduce “B-twig

normalization” as an important first-step in ourapproach toward eventually conquering the

complexity of B-twigs, and then present BTwigMerge the first holistic twig join algorithm

designed for B- twigs. Both analytical and experimental results show that BTwigMerge is

optimal for B-twig patterns with AD (Ancestor-Descendant) edges and/or PC (Parent-Child)

edges.

Index Terms: XOR twig, Query processing, database management, XML data querying, twig

join, Boolean twig, logical predicate

*
 PG Student, Department of Computer Science and Engineering, PSN Engineering College,

Tirunelveli-627152, India

**
 Assistant Professor of the Department, Department of Computer Science and Engineering,

PSN Engineering College, Tirunelveli-627152, India

 IJESR Volume 2, Issue 4 ISSN: 2347-6532
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering & Scientific Research
http://www.ijmra.us

156

April
2014

1.INTRODUCTION

AN XML database stores a collection of data trees. An XML query describes a tree-

shaped search pattern, which is often referred to as a twig pattern [5], with additional query

conditions (if any) described as predicates on the three nodes. XML queries thus are called tree

queries or twig queries. Answering a twig query is essentially to find all matching instances from

a database that match the twig pattern implied by the query and satisfy all additional predicates

(if any) in the query. A naive way of finding the matches for a twig pattern is to scan the

database (usually for many times). A better way uses structural joins [14], [4] in a bulk way to

compute the matches for each individual edge, and then “stitch” the matches found for individual

edges together to form the answers for the whole twig. This approach typically creates large sets

of unused intermediateresults, even when the final result set is pretty small. Yet, a much more

efficient approach, called holistic twig join, computes the matches for the whole twig in a

holistic way so that irrelevant intermediate results (which need be output and input, and thus are

most detrimental to queryperformance) can be avoided. The first holistic twig joinalgorithm,

TwigStack, was proposed by Bruno et al. [5] in2002. Since then the “holistic join” approach has

been donebroadly extended by numerous followers [6], [8], [7], [9],selects the authors who have

papers either titled “TwigJoin” or published in SIGMOD 2006. This query contains bothOR and

AND operations. The next query, finds papers that donot have references. This query contains a

NOT operation. Atwig that may contain arbitrary combination of ANDs, ORs,and NOTs, is

referred to as an AND/OR/NOT-twig or Boolean twig(or simply B-twig).

The importance of B-twigs for XML queries is obvious andwell recognized [7], [13]. So

far, we only see that Jiang et al. [7]studied the holistic twig join issue for AND/OR-twigs

(i.e.,twigs with only AND and OR predicates) and Yu et al. [13] tackled the problem for

AND/NOT-twigs (i.e., twigs withonly AND and NOT predicates). There is no integral

methodever reported facing the full challenge of holistic B-twigcomputing. The challenge with

full B-twigs lies in thearbitrary occurrences of an arbitrary number of AND/OR/NOT predicates

in a B-twig (we refer to this challenge as the“double arbitrariness” challenge of B-twigs). This

challengemakes programmatic handling of B-twigs in the frameworkof holistic computing

extremely hard (if not impossible). Wehave made numerous years of effort on conquering the

fullchallenge of B-twigs. We could not easily sort out thecomplication caused by the “double

 IJESR Volume 2, Issue 4 ISSN: 2347-6532
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering & Scientific Research
http://www.ijmra.us

157

April
2014

arbitrariness” of Btwigs,and thus could not systematically andprogrammatically solve the

problem of B-twigs with anice algorithm. However, our effort has helped us gain in-depthinsight

into the challenge of holistic B-twig patterncomputing. We have made numerous years of effort

onconquering the full challenge of B-twigs. We could noteasily sort out the complication caused

by the “doublearbitrariness” of B-twigs, and thus could notsystematically and programmatically

solve the problem ofB-twigs with a nice algorithm. The severity of thischallenge, we believe,

there are so many ways holistic joinsolution for B-twigs that has not been developed nearly 9

years after Bruno et al. first proposed the promisingholistic join approach [5] that afterward

quickly inspired thesolutions for AND/OR-twigs [7] and AND/NOT-twigs [13]separately

proposed by different researchers. From AND/OR-twigs and AND/NOT-twigs to full B-twigs

appears to bejust one step, however, as the complexity implied by thedouble arbitrariness blows

up, a holistic join approach for fullB-twigs cannot be simply obtained from combining

themethods separately designed for AND/OR-twigs andAND/NOT-twigs. Rather, a more

creative strategy with more powerful supporting mechanisms must be invented forB-twigs.

Solving the challenge of holistic B-twig computinghas both practical and academic significance.

From thepractical perspective, this effort helps to mature the promisingholistic twig join

approach and can immediately find usein real XML query applications; from the academic side,

itsolves an important technical problem and the obtainedresult can be generalized to any data

sources incarnating atree data model (while XML is just one use case of the generaltree data

model).

We are thus motivated to sort out the complicationinvolved in holistic computing of B-twig

pattern matches.In this paper, we present our complete approach, includingthe techniques we

developed for systematically solvingholistic B-twig computing. The contributions of our

workreported here can be summarized as follows:

 We propose a novel facility, i.e., B-twignormalization, which serves as the first milestone

in our approach toward eventually solving the increased complexityof B-twigs.

 We expound a sound method for automatically performing B-twig normalization, which

is an important prestep in our overall approach.

 We present BTwigMerge, the first holistic join algorithm ever designed for (normalized)

B-twigs, including numerous original supporting mechanisms.

 IJESR Volume 2, Issue 4 ISSN: 2347-6532
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering & Scientific Research
http://www.ijmra.us

158

April
2014

 BTwigMerge performs optimal matching [5] for both AD (Ancestor-Descendent) edges

and PC (Parent-Child) edges, while prior algorithms claim optimality only for AD edges.

The remainder of this paper is organized as follows:Section 2 reviews related work.

Section 3 sets forth thepreliminaries for the subsequentdiscussion, including datamodel, B-twig

representation, and normalization. Section 4 presents our algorithm, BTwigMerge,including its

various supporting functions (each implements an important supporting mechanism). Section 5

provides experimental results, demonstrating the superiority of our approach and algorithm.

2 RELATED WORK

Twig pattern matching is a core operation in the XML query processing. Naive navigation (or

pointer-chasing), structural joins, and holistic twig joins have all been studied for twig pattern

matching. In the following, we review representative works on structural joins and particularly

on holistic twig joins.

 The first structural join (called containment join) algorithmwas proposed by Zhang et al.

[14], which extends thetraditional merge join to multipredicate merge join(MPMGJN). Al-

Khalifa et al. [4] later proposed two familiesof structural join algorithms, i.e., tree-merge and

stack-basedstructural joins, as primitives forXMLtwig query processing.In 2002, Bruno et al. [5]

first proposed the holistic twig joinapproach for XML twig queries in order to overcome

thedrawback of structural joins that usually generate large setsof unused intermediate results.

Bruno et al. designed the firstholistic twig join algorithm, named TwigStack, which isoptimal for

twigs with only AD edges (but not with PCedges). The work of Lu et al. [9] aimed at making up

this flawand they presented a new holistic twig join algorithm,TwigStackList, in which a list

structure is used to cachelimited elements in order to identify a larger optimal queryclass. Chen

et al. [6] studied the relationship betweendifferent data partition strategies and the optimal

queryclasses for holistic twig joins. Lu et al. [10] proposed a newlabeling scheme, called

extended Dewey, and an interestingalgorithm, named TJFast, for efficient processing of

XMLtwig patterns. Unlike all previous algorithms based on regionencoding, to answer a twig

query, TJFast only needs toaccess the labels of the leaf query nodes. The result of Lu et al.

[10] Includes enhanced functionality (can process limitedwildcard), reduced disk access, and

increased total queryperformance. The same group [11] also studied efficientprocessing for

ordered XML twig patterns using their regionencoding scheme.

 IJESR Volume 2, Issue 4 ISSN: 2347-6532
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering & Scientific Research
http://www.ijmra.us

159

April
2014

 In an ordinary twig, the multiple sibling nodes under acommon parent node automatically

signify the AND logicrelationship among them, and all previously proposedholistic twig join

algorithms already support this impliedAND logic in their implementation schemes. Users

wouldtake all the three commonly used logical predicates, AND, OR, and NOT, as granted

facilities in formulating their XMLqueries and thus would expect full support from a

queryengine for unlimited use of all these predicates in their XMLqueries. Jiang et al. [7] made

the first effort towardincorporating support for OR predicates into the holistictwig join approach

pioneered by Bruno et al. [5], and Yu et al.[13] made effort for supporting NOT predicates in

XML twigqueries. Jiang et al. [7] presented an interesting frameworkfor holistic processing of

AND/OR-twigs based on theconcept of OR-block. With resort to OR-blocks, an AND/OR-twig

is transformed to an AND-only twig carryingspecial OR-blocks. This work is inspiring to us—

we find it ispossible to substantially extend their framework so that theNOT logic can be

seamlessly incorporated. Nevertheless,this work is not straightforward, but requires

creativereinvention of the “wheels.” In order to harness thecomplexity of B-twigs, we resort to

B-twig normalization;then based on normalized B-twigs, we are able to extend andadapt the OR-

block concept with new supporting mechanismsfor handling the NOT predicates involved in B-

twigs.

 The recent publication of Xu et al. [12] proposed anotherinteresting algorithm that claims

to be able to efficientlycompute the answers to XML queries without holisticallycomputing the

twig patterns—the answers obtained containindividual elements corresponding to designated

output query nodes. So basically this work does not belong to thecategory of holistic twig join

algorithms. But what isinteresting of their work [12] is the proposed path-partitionedelement

encoding scheme, which bears efficiency potential andmay be considered in the future for further

improving theperformance of holistic B-twig pattern matching.

3 PRELIMINARIES

In this section, we first address the data model issue,B-twig representation and

normalization, and then introducethe notations and operations needed in our

subsequentdiscussion.

 IJESR Volume 2, Issue 4 ISSN: 2347-6532
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering & Scientific Research
http://www.ijmra.us

160

April
2014

3.1 Data Model

We adopt the general perspective [5] that an XML databaseis a forest of rooted, ordered,

and labeled trees, each nodecorresponds to a data element/value, and each edgerepresents an

element-sub element or element-value relation.The order among sibling nodes implicitly defines

atotal order on the tree nodes. Node labels are important forefficient processing of a twig pattern

as properly designednode labels may leave out the necessity of accessing thenode contents

during query evaluation. This is especiallytrue with twig pattern matching, which is at the core

ofXML query processing. Node labels typically encode theregion information of data elements

that reflects the relativepositional relationships among the elements in the sourcedata file. We

assume a simple encoding scheme using atriplet region code—(start; end; level)—which is

assigned toeach data element in a tree database as a label. Whenmultiple documents are present,

the document-id is added tothe labels to differentiate the documents. Region code canbe

conveniently obtained through preorder document-treetraversing.

3.2 Tree Representation

Each XML query implies a twig pattern, small, or large. Thesmallest twig may contain

just a single node, but a typicaltwig usually comprises a number of nodes. The target ofour

investigation is the B-twigs that allow arbitrarycombination of AND, OR, and NOT predicates,

of whicheach may have multiple occurrences. Each B-twig mayconsist of two general categories

of nodes: ordinary querynodes standing for element types (or tags) and specialconnective nodes

denoting logical predicates—AND, OR, andNOT. More specifically, we represent a B-twig

using thefollowing specific types of nodes:

 QNode. An ordinary query node, associates to an element type (or tag name) in a tree

database. For programmatic purposes (as in [7]), a QNode records its location step axis

“//” or “/” for edge test, and a tag name for node test. Therefore, the content of a QNode

takes the general format of “/tag” or “//tag.” A non-root QNode in a B-twig may be

conveniently called a d-child or c-child (of its parent) depending on whether a “//” or a

“/” symbol is recorded in the QNode’s content (Notice that in the sequel we may not

always show the location step axes in ourillustrations when the emphasis is onsomething

else).

 IJESR Volume 2, Issue 4 ISSN: 2347-6532
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering & Scientific Research
http://www.ijmra.us

161

April
2014

 ANode. An AND predicate node, always takes the text “AND” as its content. It connects

two or morechild sub trees through the AND logic.

 ONode. An OR predicate node, always takes the text“OR” as its content. It connects two

or more childsub trees through the OR logic.

 NNode. The NOT predicate node, always takes thetext “NOT” as its content.

Functionally, a NNodenegates the predicate denoted by the sub tree

immediatelyunderneath it. A NNode is commonlycombined with the node underneath it

in the B-twig,forming a composite node. We have the followingthree kinds of composite

nodes related to NOT

 ZNode. An XOR predicate node, always takes the text “XOR” as its content. It connects

two or morechild sub trees through the XOR logic.

Fig. 1. Example twigs involving NOT

-NQNode: the combined form of a NOT nodewith a subsequent QNode child (such

combinationjust causes the representation of a B-twigmore compact, and does not affect the

semanticsor interpretation of the twig pattern). Forexample, in the query Q1 (shown in Fig. 1),

theNOT and the subsequent child QNode “/B” canbe combined and replaced by a single

NQNodewith content “ /B.”

- NANode. The combined form of a NOT nodewith

its sole ANode child.

- NONode. The combined form of a NOT nodewith

its sole ONode child.

-NZNode. The combined form of a NOT node with

its sole ZNode child.

 IJESR Volume 2, Issue 4 ISSN: 2347-6532
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering & Scientific Research
http://www.ijmra.us

162

April
2014

We could also have the fourth type of composite nodethat represents a NOT node

combined with another (child)NOT node (i.e., a double negation node that could benamed

NNNode). As the net effect of double negations isthe same as no negation at all, double negation

nodes are notactually used in our representation for B-twigs. From nowon, we generally refer to

QNodesand NQNodes as querynodes, and other (plain or composite connectives) nodes in aB-

twig as no query nodes.

 With the above mechanisms introduced, our representationscheme for B-twigs is

apparently a superset of what canbe represented by the scheme adopted by Jiang et al. [7] for

thesimpler AND/OR-twigs. ConsideringNOTas a new elementadded to B-twigs (comparing to

the AND/OR-twigs studiedin [7]), we next illustrate the four typical cases that the

NOTpredicates may appear in an XML twig query. The followingfour queries exemplify these

four representative cases:

Q1. A[NOT/B/C]

Q2. A[NOT (/B AND/C)]//D

Q3. A[NOT (/B OR/C)]//D

Q4. A[NOT/B[NOT/C]]

Q5. A[NOT[/B XOR/C]]

3.3 Edge test Algorithm

 The main structure of function edgeTest (andfunction nEdgeTestas well) is a while loop,

which at the first glimpse appears unnecessary, but (at lines 7 and 8, see Fig.2) brings an

important optimization—fast skipping noncontributingelements in stream Tq until the cursor

moves over therange of the parent element e. (This “fast skipping” has theeffect of instant

performance optimization, otherwise thosenoncontributing elements will stay in their streams

causingextra iterations and consuming extra CPU time.). The location step axis is obtained from

the content of the childquery node. The implementation of function nEdgeTest relies on

repeatedcalls to function edgeTest (see Fig.3). The implementation offunction ONodeTest (see

Fig. 4) almost straightforwardlyfollows Definition. It is based on edgeTest ,nEdgeTest,and yet

another function, hasExtension, that realizes.

FUNCTION edgeTest(e,q)

 IJESR Volume 2, Issue 4 ISSN: 2347-6532
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering & Scientific Research
http://www.ijmra.us

163

April
2014

1: while not end(Cq) do

2: if e.start<Cq →start and e.end>Cq→ end

then

3: if q.axis==’//’ then

4: return true

5: else if e.level == Cq → level -1 then

6: return true

7: if Cq→end<e.end then

8: Cq→advance()

9: else

10: break

11: end while

12: return false

Fig.2. Function edgeTest.

Holistic twig joins typically disallow backtracking ofstream cursors to guarantee linear

time complexity. Noticethat the evaluation of a NOT predicate involved in a B-twigrequires

disproving all elements in the negated stream(associated to the query node negated by the

NOTpredicate). This seems to imply that we need to scan tothe very end of the negated stream to

disprove all elements,and then backtrack the stream cursor to get ready forevaluating the

subsequent parent elements. In fact, suchbacktracking can be avoided.

FUNCTION nEdgeTest(e,q)

1: while not end(Cq) do

2: if edgeTest(e,q) = = true then

3: return false

4: else if Cq→end<e.end then

5: Cq→advance()

6: else

7: break

8: end while

9: return false

 IJESR Volume 2, Issue 4 ISSN: 2347-6532
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering & Scientific Research
http://www.ijmra.us

164

April
2014

Fig.3. Function nEdgeTest

Let’s exemplify this: assumingwe are processing the B-twig sub expression X NOT Y,

andelements xi and yj are currently under the cursor of theirrespective streams, TX and TY, there

are two cases toconsider now: 1) yj happens to fall within the region of xi,this immediately

disproves xi and the evaluation immediatelyreturns; 2) yj is not in the range of xi, this leads to

two possible subcases: a) yj is ahead of xi—then we just advancecursor CY and start the next

iteration to evaluate with thenext element following yj; b) yj falls behind xi, this isenough to

qualify xi, since all subsequent elements after yj(if any) can only be farther away from the

coverage of xidue to the sortends of the elements in stream TY. In allcases, advancing of the

stream cursor TYnever goes beyondthe range covered by xi, and backtracking is never

needed.The code in Fig.4 embodies the idea discussed above.

FUNCTION ONodeTest(e,n)

1: for each ni in P(n) do

2: if isLeaf(ni) and isQNode(ni)

3: replace ni by edgeTest(e, ni)

4: else if isLeaf(ni) and isNQNode(ni)

5: replace

ni by(edgeTest(e, ni) andhasExtension(ni))

6: else /* ni is a non leafQNode

7: replace ni by edgeTest(e, ni)

8: end for

9: evaluate P (n) and return the result

Fig.4. Function ONodeTest

4 AHOLISTIC B-TWIG JOIN ALGORITHM

 IJESR Volume 2, Issue 4 ISSN: 2347-6532
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering & Scientific Research
http://www.ijmra.us

165

April
2014

With the supporting mechanisms set forth in the precedingsections, we now present our

novel holistic B-twig joinalgorithm, BTwigMerge, in this section.

4.1 BTwigMerge: The Main Algorithm

The structure of our main algorithm, BTwigMerge, asshown in Fig.5, is not much

different from most otherholistic twig join algorithms [5], [6], [8], [7], [9], [10], [11],[13]. It is a

merge-based, two-phase algorithm. However, aswe confront a different, more complex problem

of B-twigsthat was not considered by previous holistic algorithms, theprocessing strategy of our

BTwigMerge must be accordingly different. The difference mainly lies in the key supporting

function, GetQNode(detailed in the next

Section). In addition to feeding the main algorithm the nextquery node to be processed, our

GetQNode functionthoroughly investigates the candidacy of the elements inthe input streams and

guarantees that for the next QNodereturned to the main algorithm the current element in

theassociated stream is fully qualified, i.e., the element satisfiesall relevant criteria (including all

predicates and edge tests).Functionally, algorithm GTwigMerge [7] is the closest toour

BTwigMerge, but at the main algorithm level,BTwigMerge is more concise: with each valid

query node qreturned by GetQNode (the validness is checked at line 3, seeFig.5), BTwigMerge

cleans up relevant stacks (lines 6 and7), moves the element associated to q from stream to stack

if itis not an output leaf (at lines 8 to 10), otherwise (q is an outputleaf) outputs the path solutions

currently on the stacks(lines 9 and 10). It is worth to point out that BTwigMerge doesnot

explicitly process OR and any other predicates at themain algorithm level (differing from

GTwigMerge [7]).Instead, all critical processing logics are encapsulated inthe key supporting

function, GetQNode, and other lowerlevel supporting functions. GetQNode also checks

whethereach involved PC or AD edge is, respectively, satisfied by thestream head element

associated to q that is to be returned tothe main algorithm as the next QNode for

processing.Therefore, our BTwigMerge achieves matching optimalitynot only with AD edges but

also with PC edges (this is instrong contrast to all previous holistic algorithms

includingTwigStack [5] and GTwigMerge [7], etc.).

FUNCTION ORBlockMax(n)

1: q0=0 /* refers to QNode */

2: if isNQNode(n) then

 IJESR Volume 2, Issue 4 ISSN: 2347-6532
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering & Scientific Research
http://www.ijmra.us

166

April
2014

3 return 0

4: else if isNQNode(n) and isLeaf(n) then

5: return n

6: else

7: if isQNode(n) then

8: q0= n

9: for each niϵ children (n) do

10: qi = ORBlockMax(ni)

11: end for

12: if isONode(n) then

13: return argminqi{ei,start}

14: else

15: return argmaxqi{ei,start}

 Fig.6. Function ORBlockMax.

Some important features of BTwigMerge are highlightedas follows:

1. BTwigMerge receives (from GetQNode) either avalid output QNode q or an invalid QNode,

denotedby null. An invalid QNodeis typically generated byGetQNode when a non-top level

recursive call intothis function fails to find a QNode associated with afully qualified

element. But since noncontributingelements encountered during this process have

beenskipped, the main algorithm quick jumps to its nextiteration (at line 4) to start a new

call to GetQNodefor getting the next valid QNode.

2. No stacks are allocated for no outputQNodes, norfor any output leaves (QNodes) since the

contributingelements corresponding to an output leaf can bedirectly grabbed from the

associated stream foroutput.

3. GetQNode performs specific edge test (PC or AD),which renders both I/O and CPU

optimality for bothAD and PC edges involved in a B-twig.

4. “Stack cleaning” is needed in BTwigMerge solelybecause each time after outputting path

solutions,some elements on the stacks may become irrelevantfor future path solutions and

must be cleaned out.(In most prior algorithms such as TwigStack, stackcleaning is required

 IJESR Volume 2, Issue 4 ISSN: 2347-6532
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering & Scientific Research
http://www.ijmra.us

167

April
2014

to get rid of those noncontributingelements that may have been tentatively addedto the

stacks but are actually noncontributing.)

5. BTwigMerge does not explicitly (at the mainalgorithm level) deal with any AND/OR/NOT

predicates,nor with any no outputQNodes.

4.2 GetQNode: The Key Supporting Algorithm

GetQNode is an essential subroutine which is called by themain algorithm BTwigMerge

to decide the next QNode forprocessing. It is GetQNode that guarantees that the streamhead

element associated to the returned QNode is part ofthe final output since all the relevant

predicates (if any) arethoroughly checked by GetQNode or its lower levelprimitive subroutines

such as edgeTest, nEdgeTest,ONodeTest, and hasExtension, etc.

While feeding BTwigMerge with the next QNode to beprocessed, some elements on the

stream under considerationmay be found noncontributing to the final answer andthus should be

skipped right away. The term, largestthreshold value, introduced by Jiang et al. [7] refers to

thestart label of a sub element emax of another element, say, esuch that emax maximizes the start

label among all theoffspring elements of e. Such a threshold value can be usedto skip e and all its

successors if their end label are smallerthan this threshold value. It still makes sense to carry

outthis type of optimization for B-twig join, but we need toredefine the mechanism to fit the

particular need of B-twigs.

FUNCTION GetQNode(q)

1: if isLeaf(q) then

2: return q

3: for each qi ϵ children (q) do

4: q0= GetQNode(qi)

5: if q0 ≠ qi and isOutNode(q0) then

6: return q0

7: end for

8: qmax= getMaxQChild(q)

9: while Cq → start <Cqmax →start do

10: Cq→advance()

11: end while

12: qmin= argminqi{ Cq → start}, qi ϵ children (q)

13: while Cq → start <Cqmin →start do

 IJESR Volume 2, Issue 4 ISSN: 2347-6532
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering & Scientific Research
http://www.ijmra.us

168

April
2014

14: if hasExtension(q) and isOutNode(q) then

15: return q

16: else

17: Cq→advance()

18: end while

19: if hasExtension(qmin) and isOutNode(qmin)

20: return qmin

21: else

22: Cqmin→advance()

23: if end(q) then

24: return null

25: else

26: return GetQNode(q)

Fig.7. Function GetQNode

The largest threshold value is computed by a specialsupporting function, called

ORBlockMax(n), in [7]. Weextend this function for our purpose as shown in Fig.6,which

conforms to our revised notion for OR-blocks.

Understanding the structural features of OR-blocks innormalized B-twigs is the key to

understanding how ourORBlockMax function works. This algorithm traverses thestructure of an

OR-block and computes the maximumthreshold value to help effectively skip disqualified

elementsin the parent stream. Line 1 initializes the variable q0to a special (imaginary) query

node, denoted by 0, which isalways associated to a special (imaginary) element identifiedby the

region code (0; 0; 0). When the input node is anNQNode, line 3 returns this special query node

0(associated to the imaginary element (0; 0; 0). Variable q0is reinitialized at line 8 to n, and is

used at line 16 whenchoosing the qmax from all the QNodes qi under considerationsuch that

qmax gives the maximal start value. At line 13,function argminqi(ei.start) selects qmin from all

theQNodes qi under consideration such that qmin has theminimal start value. Notice that at this

point (line 13), theimaginary element with region code (0, 0, 0) is excluded because all NQNodes

are irrelevant to the purpose offunction ORBlockMax—i.e., to help skip disqualifiedelements in

the parent stream.The implementation of function GetQNode is shown inFig.7. The QNodeqx

returned by GetQNode(q) can be oneof the following two cases:

FUNCTION getMaxQChild(q)

 IJESR Volume 2, Issue 4 ISSN: 2347-6532
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering & Scientific Research
http://www.ijmra.us

169

April
2014

1: for each ni ϵ children (q) do

2: if isQNode(ni)

3: qi =ni

4: else if isNQNode(ni) then

5: qi =0

6: else

7: qi =ORBlockMax(ni)

8: end for

9: return argmaxqi{ Cq → start}, for qi

Fig.8. Function getMaxQChild.

1) qx= null (here null denotes aninvalid query node), signifying to the main algorithm

toimmediately start another call to GetQNode for quicklygetting the next valid QNode if the

streams are notexhausted yet; 2) qx is a valid output QNode—this is thedominating case,

similarly handled as in all other holistictwig join algorithms. Comparing with GTwigMerge [7],

themost related holistic join algorithm to BTwigMerge, thestructure of our main algorithm is

more succinct:we pushed all important tests—including AD and PC edgetests, and tests on any

AND/OR/NOT predicate—all downto the core subroutine, GetQNode, or its lower levelprimitive

supporting functions. The advantage is early skipping of disqualified elements in streams,

leading toimproved algorithm performance.

In subroutine GetQNode(q), the information provided bygetMaxQChild(q) (line 8 in

Fig.7) is used to skipdisqualified elements in stream Tq. Unlike its counterpartin GTwigMerge

[7], our getMaxQChild(q) (see Fig.8)considers NQNodes in addition which do not exist in

thesimpler AND/OR-twigs that GTwigMerge was designed for.

4.3 Cost Analysis of BTwigMerge

We now analyze the I/O and CPU cost of our algorithmBTwigMerge. For ease of

presentation, given B-twig query Q,we first introduce the following parameters:

 [QNodes] is the total number of QNodes in Q.

 [NQNodes] is the total number of NQNodes in Q.

 Query size Qj = [QNodes] + [NQNodes]. Noticehere we do not count other logical

predicate nodestoward the query size.

 IJESR Volume 2, Issue 4 ISSN: 2347-6532
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering & Scientific Research
http://www.ijmra.us

170

April
2014

 [Input] stands for the total size of all the inputstreams relevant to query Q.

 [List] stands for the average stream length.

 [Output] stands for the total count of the dataelements included in all output B-twig

instancesproduced for query Q.

In terms of the set of twig patterns that can be processed,BTwigMerge is a “superset” of

GTwigMerge andGTwigMerge is a “superset” of TwigStack. At the main algorithm level, the

three algorithms share great similarity.The cost analysis methods are also similar. So, in

thefollowing, we only provide a compact analysis for the I/Oand CPU cost of BTwigMerge.

The I/O cost of BTwigMerge consists of three parts: theI/O cost for accessing all the relevant

input stream elementsand the I/O cost for dealing with the intermediate pathsolutions plus the

I/O cost for outputting the final twigsolutions. Since in BTwigMerge, we always advance

thestream cursors and never backtrack, the first part of the I/Ocost is the total size of all relevant

input streams. For thesecond part, since BTwigMerge is optimal with both ADand PC edges—

i.e., it never produces useless intermediatepath solutions, the I/O cost of this part is two times

(for firstoutput and then input) of the total final output size, i.e.,2· [Output]. And the third part

(for outputting the finalresults), of course, is [Output]. All together, the total I/Ocost for

BTwigMerge is the sum of the above three parts.We therefore have the following equations

regarding the I/O cost of BTwigMerge:

I/Ocost=([QNodes]+[NQNodes]+[ZQNodes])·

[List]+3· [Output]

 = [Q] · [List]+3 · [Output]

 = [Input] +3 · [Output]:

The CPU cost analysis for BTwigMerge is analogous. TheCPU cost also consists of three

parts. The first part is the timespent on computing the path solutions, the second part is thetime

spent on dealing with the obtained intermediate pathsolutions (output, input, and merging), and

the third part ison outputting the final twig solutions. The main structure ofBTwigMerge is a loop

that repeats no more than [Input] times,which is the total number of elements in all the input

streamsbecause noncontributing elements are skipped at line 10, 17,and 22 of GetQNode (see

Fig. 13) or by the optimizationrendered by the two primitive functions, edgeTest andnEdgeTest

(see Figs. 8 and 9, respectively). So the first part ofthe CPU cost is linear to the input size. The

second partdepends on how many intermediate path solutions areproduced and how many of

 IJESR Volume 2, Issue 4 ISSN: 2347-6532
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering & Scientific Research
http://www.ijmra.us

171

April
2014

them are going to be merged toform the final output twig solutions. As BTwigMerge doesnot

produce any unused intermediate path solutions (itactually does not push any noncontributing

elements ontoany stack), the second part of the cost is linear to and solelydecided by the output

size [Output]. And the third part ofcourse is also linear to the output size. Added together, forthe

overall CPU cost of BTwigMerge, we have exactly thesame result as we have for the I/O cost

(cost equationsomitted). It is worth to point out that query size [Q] in CPUcost is counted

slightly differently from that in I/O cost: forthe former, [Q] counts the duplicated query nodes

caused bynormalization, but for I/O cost, it does not becauseduplicatequery nodes do not cause

extra physical I/O.The above cost analysis results shows that ourBTwigMerge has both optimal

I/O cost and optimal CPUcost for normalized B-twigs with both AD and PC edges.Our

experimental study provides empirical evidences tofurther support this conclusion.

5 EXPERIMENTS

In this section, we present the experiment results. As ourBTwigMerge is the only

algorithm of its kind—designed forholistic B-twig pattern matching, there does not exist a

realcompetitor to compare with. In this case, one plausiblebaseline to compare with is a

decomposition-basedapproach. A decomposition-based approach first splits an input B-twig at

everypredicate node into a series of subtwigs, then separatelycomputes the partial solutions to the

subtwigs, and finallycombines the obtained partial solutions to form the wholesolutions to the

original B-twig. Such a decompositionbasedapproach suffers severe performance

disadvantagethat Jiang et al. [7] had empirically proven with a subclassof B-twigs years ago. For

more general B-twigs, the problemof decomposition-based approach can only become worse.So

we have no intention to empirically reprove theconclusion of Jiang et al. [7] at the scale of full

B-twigs,instead, we comparatively study the performance of ouralgorithm and other related

algorithms on various commonsubclasses of B-twigs.

As the first holistic twig join algorithm, TwigStack [5] isdesigned for simple AND-only

twigs. In terms of thecategories of twigs being processed, GTwigMerge [7] generalizesTwigStack

and is a superset of TwigStack—capablefor AND/OR-twigs; TwigStackList: [13] also

generalizesTwigStack but from a different aspect and thus is a superset ofTwigStack [5] as well—

capable for AND/NOT-twigs; ourBTwigMerge significantly extends the approach embodied

inGTwigMerge and becomes a superset of both GTwigMergeand TwigStackList:—capable for

 IJESR Volume 2, Issue 4 ISSN: 2347-6532
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering & Scientific Research
http://www.ijmra.us

172

April
2014

full B-twigs, i.e., AND/OR/NOT-twigs. The theme of our experimental study thus isset on

comparing BTwigMerge, respectively, with thesepredecessor algorithms with regard to a

common subset oftwig queries that they are all (or both) capable of dealing with.

5.1 Experimental Setup

Before proceeding to the details of our experiment study,we first address a few related issues

about this study.Platform setup. The platform of our experimentscontains an Intel Core 2 DUO

2.2 GHz running WindowsXP System with 4 GB memory and a 75 GB hard disk. JavaSE is the

software platform on which these algorithms areimplemented and tested. The various data sets

used for thisstudy are kept as external files on the hard disk.Convenientplatform, JUnit 1.4 was

used for concise timingof these algorithms on test queries.

Data preparation. To avoid potential bias of using asingle data set, we choose three popular

XML data sets forthis study. The first data set is an XMark data set [3] storedin a single XML

file. This data set takes roughly 100 MB,containing about 100 thousands elements (or nodes).

Thesecond data set is a generated one by Stylus XML Generator[1] using a given XML Schema.

Stylus XML Generatorallows users to specify the expected structure and size ofasa XML data

via separate XML Schema files. For thispurpose, we carefully designed an XML schema with

variedtree structures to avoid biased results.

6. SUMMARY

Holistic twig joins are critical operations for XML queries.The three basic logical

predicates, AND, OR, and NOT, arenatural expression mechanisms that people would desire

toapply to general XML queries. However, all previouslyproposed holistic twig join algorithms

failed to provide anintegral solution for efficient and uniform processing of Btwigqueries (with

arbitrary combination of these logicalpredicates) in a single algorithmic framework.

Consequently,given a general B-twig query, all prior holisticalgorithms become inapplicable and

useless. In this paper,we presented a novel approach for holistic computing of Btwigpatterns and

described an original algorithm, calledBTwigMerge, which is the first of its kind—

holisticcomputing of a more general class of twig patternsrepresented by B-twigs. The second

distinctive feature ofBTwigMergeis that it gracefully extends the I/O and CPUoptimality to twigs

with PC edges as well.

 IJESR Volume 2, Issue 4 ISSN: 2347-6532
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering & Scientific Research
http://www.ijmra.us

173

April
2014

In order to reduce the intrinsic complexity in arbitrary Btwigs,we proposed B-twig

normalization that successfullysorts out the arbitrary combination of the logical predicatesin B-

twigs. We designed a valid procedure to automaticallytransform input B-twigs into normalized

forms. Thenormalized B-twigs are then sent to BTwigMergethatembodies our holistic twig join

strategy and containsnumerous novel supporting mechanisms.

We have done analytical and experimental study withregard to the validity and

performance of our approach andits accompanying algorithms, and concluded that

ourBTwigMergeis so far the most powerful and most efficientholistic twig join algorithm—the

sole one designed for Btwigs,with optimal I/O and optimal CPU on twigs witharbitrary AD

and/or PC edges. As future work, thefollowing is on our agenda: Implementation of XOR

andefficiency increase by Indexing method.

REFERENCES

[1] Stylus Studio XML Generator, http://www.stylusstudio.com/xml_generator.html,2012.

[2] Univ. of Washington XML Repository, http://www.cs.washington.edu/research/xmldatasets/,

2012.

[3] XMark? An XML Benchmark Project, http://www.xmlbenchmark.org/,2012.

[4] S. Al-Khalifa et al., “Structural Joins: A Primitivefor Efficient XMLQuery Pattern

Matching,” Proc.18th Int‟ l Conf. Data Eng. Conf.(ICDE‟ 02), pp. 141-152, 2002.

[5] N. Bruno, N. Koudas, and D. Srivastava, “Holistic Twig Joins:Optimal XML Pattern

Matching,” Proc. ACM SIGMOD Int‟ l Conf.Management of Data (SIGMOD‟ 02), pp. 310-

321,June 2002.

[6] T. Chen, J. Lu, and T.W. Ling, “On Boosting Holism in XML TwigPattern Matching Using

Structural Indexing Techniques,” Proc.ACM SIGMOD Int‟ l Conf. Management of Data

(SIGMOD‟ 05),pp. 455-466, June 2005.

[7] H. Jiang, H. Lu, and W. Wang, “Efficient Processing of TwigQueries with OR-Predicates,”

Proc. ACM SIGMOD Int‟ l Conf.Management of Data (SIGMOD‟ 04), pp. 59-70, 2004.

[8] H. Jiang, W. Wang, H. Lu, and J.X. Yu, “Holistic Twig Joins onIndexed XML Documents,”

Proc. 29th Int‟ l Conf. Very Large DataBases (VLDB‟ 03), pp. 273-284, Sept. 2003.

http://www.stylusstudio.com/xml_generator.html
http://www.cs.washington.edu/research/xmldatasets/
http://www.xmlbenchmark.org/

 IJESR Volume 2, Issue 4 ISSN: 2347-6532
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering & Scientific Research
http://www.ijmra.us

174

April
2014

[9] J. Lu, T. Chen, and T.W. Ling, “Efficient Processing of XML TwigPatterns with Parent Child

Edges: A Look-ahead Approach,” Proc.13th ACM Int‟ l Conf. Information and Knowledge

Management(CIKM‟ 04), pp. 533-542, Nov. 2004.

[10] J. Lu, T.W. Ling, C.-Y. Chan, and T. Chen, “From Region Encodingto Extended Dewey:

On Efficient Processing of XML Twig PatternMatching,” Proc. 31st Int‟ l Conf. Very Large

Data Bases (VLDB‟ 05),pp. 193-204, Aug. 2005.

[11] J. Lu et al., “Efficient Processing of Ordered XML Twig Pattern,”Proc. 16th Int‟ l Conf.

Database and Expert Systems Applications(DEXA‟ 05), pp. 300-309, 2005.

[12] X. Xu, Y. Feng, and F. Wang, “Efficient Processing of XML TwigQueries with All

Predicates,” Proc. IEEE/ACIS Int‟ l Conf. Computerand Information Science (ICIS ‟ 09), pp.

457-462, June 2009.

[13] T. Yu, T.W. Ling, and J. Lu, “twigstacklist: A Holistic Twig JoinAlgorithm for Twig Query

with Not-Predicates on XML Data,”Proc. 11th Int‟ l Conf. Database Systems for Advanced

Applications

(DASFAA‟ 06), pp. 249-263, 200

[14]XML Repositoryhttp://ghr.nlm.nih.gov/search

http://ghr.nlm.nih.gov/search

