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Abstract— 

Twig pattern matching is a critical operation for XML query processing, and theholistic 

computing approach has shown superior performance over other methods. Since Bruno et al. 

introduced the first holistic twig join algorithm, TwigStack, numerous so-called holistic twig join 

algorithms have been proposed. Yet practical XML queries often require support for more 

general twig patterns, such as the ones that allow arbitrary occurrences of an arbitrary number of 

logical connectives (AND, OR, and NOT); such types oftwigs are referred to as B-twigs (i.e., 

Boolean-Twigs) or AND/OR/NOT-twigs. We have seen interesting work on generalizing 

theholistic twig join approach to AND/OR-twigs and AND/NOT-twigs, but have not seen any 

further effort addressing the problem of AND/OR/NOT-Twigs along with XOR twig at the full 

scale, which therefore forms the main theme of this paper. In this paper, we investigate novel 

mechanisms for efficient B-twig pattern matching. In particular, we introduce “B-twig 

normalization” as an important first-step in ourapproach toward eventually conquering the 

complexity of B-twigs, and then present BTwigMerge the first holistic twig join algorithm 

designed for B- twigs. Both analytical and experimental results show that BTwigMerge is 

optimal for B-twig patterns with AD (Ancestor-Descendant) edges and/or PC (Parent-Child) 

edges. 

Index Terms: XOR twig, Query processing, database management, XML data querying, twig 

join, Boolean twig, logical predicate  
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1.INTRODUCTION 

AN XML database stores a collection of data trees. An XML query describes a tree-

shaped search pattern, which is often referred to as a twig pattern [5], with additional query 

conditions (if any) described as predicates on the three nodes. XML queries thus are called tree 

queries or twig queries. Answering a twig query is essentially to find all matching instances from 

a database that match the twig pattern implied by the query and satisfy all additional predicates 

(if any) in the query. A naive way of finding the matches for a twig pattern is to scan the 

database (usually for many times). A better way uses structural joins [14], [4] in a bulk way to 

compute the matches for each individual edge, and then “stitch” the matches found for individual 

edges together to form the answers for the whole twig. This approach typically creates large sets 

of unused intermediateresults, even when the final result set is pretty small. Yet, a much more 

efficient approach, called holistic twig join, computes the matches for the whole twig in a 

holistic way so that irrelevant intermediate results (which need be output and input, and thus are 

most detrimental to queryperformance) can be avoided. The first holistic twig joinalgorithm, 

TwigStack, was proposed by Bruno et al. [5] in2002. Since then the “holistic join” approach has 

been donebroadly extended by numerous followers [6], [8], [7], [9],selects the authors who have 

papers either titled “TwigJoin” or published in SIGMOD 2006. This query contains bothOR and 

AND operations. The next query, finds papers that donot have references. This query contains a 

NOT operation. Atwig that may contain arbitrary combination of ANDs, ORs,and NOTs, is 

referred to as an AND/OR/NOT-twig or Boolean twig(or simply B-twig). 

The importance of B-twigs for XML queries is obvious andwell recognized [7], [13]. So 

far, we only see that Jiang et al. [7]studied the holistic twig join issue for AND/OR-twigs 

(i.e.,twigs with only AND and OR predicates) and Yu et al. [13] tackled the problem for 

AND/NOT-twigs (i.e., twigs withonly AND and NOT predicates). There is no integral 

methodever reported facing the full challenge of holistic B-twigcomputing. The challenge with 

full B-twigs lies in thearbitrary occurrences of an arbitrary number of AND/OR/NOT predicates 

in a B-twig (we refer to this challenge as the“double arbitrariness” challenge of B-twigs). This 

challengemakes programmatic handling of B-twigs in the frameworkof holistic computing 

extremely hard (if not impossible). Wehave made numerous years of effort on conquering the 

fullchallenge of B-twigs. We could not easily sort out thecomplication caused by the “double 
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arbitrariness” of Btwigs,and thus could not systematically andprogrammatically solve the 

problem of B-twigs with anice algorithm. However, our effort has helped us gain in-depthinsight 

into the challenge of holistic B-twig patterncomputing. We have made numerous years of effort 

onconquering the full challenge of B-twigs. We could noteasily sort out the complication caused 

by the “doublearbitrariness” of B-twigs, and thus could notsystematically and programmatically 

solve the problem ofB-twigs with a nice algorithm. The severity of thischallenge, we believe, 

there are so many ways holistic joinsolution for B-twigs that has not been developed  nearly 9 

years after Bruno et al. first proposed the promisingholistic join approach [5] that afterward 

quickly inspired thesolutions for AND/OR-twigs [7] and AND/NOT-twigs [13]separately 

proposed by different researchers. From AND/OR-twigs and AND/NOT-twigs to full B-twigs 

appears to bejust one step, however, as the complexity implied by thedouble arbitrariness blows 

up, a holistic join approach for fullB-twigs cannot be simply obtained from combining 

themethods separately designed for AND/OR-twigs andAND/NOT-twigs. Rather, a more 

creative strategy with more powerful supporting mechanisms must be invented forB-twigs. 

Solving the challenge of holistic B-twig computinghas both practical and academic significance. 

From thepractical perspective, this effort helps to mature the promisingholistic twig join 

approach and can immediately find usein real XML query applications; from the academic side, 

itsolves an important technical problem and the obtainedresult can be generalized to any data 

sources incarnating atree data model (while XML is just one use case of the generaltree data 

model). 

We are thus motivated to sort out the complicationinvolved in holistic computing of B-twig 

pattern matches.In this paper, we present our complete approach, includingthe techniques we 

developed for systematically solvingholistic B-twig computing. The contributions of our 

workreported here can be summarized as follows: 

 We propose a novel facility, i.e., B-twignormalization, which serves as the first milestone 

in our approach toward eventually solving the increased complexityof B-twigs. 

 We expound a sound method for automatically performing B-twig normalization, which 

is an important prestep in our overall approach. 

 We present BTwigMerge, the first holistic join algorithm ever designed for (normalized) 

B-twigs, including numerous original supporting mechanisms. 
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 BTwigMerge performs optimal matching [5] for both AD (Ancestor-Descendent) edges 

and PC (Parent-Child) edges, while prior algorithms claim optimality only for AD edges. 

The remainder of this paper is organized as follows:Section 2 reviews related work. 

Section 3 sets forth thepreliminaries for the subsequentdiscussion, including datamodel, B-twig 

representation, and normalization. Section 4 presents our algorithm, BTwigMerge,including its 

various supporting functions (each implements an important supporting mechanism). Section 5 

provides experimental results, demonstrating the superiority of our approach and algorithm. 

 

2 RELATED WORK 

Twig pattern matching is a core operation in the XML query processing. Naive navigation (or 

pointer-chasing), structural joins, and holistic twig joins have all been studied for twig pattern 

matching. In the following, we review representative works on structural joins and particularly 

on holistic twig joins. 

 The first structural join (called containment join) algorithmwas proposed by Zhang et al. 

[14], which extends thetraditional merge join to multipredicate merge join(MPMGJN). Al-

Khalifa et al. [4] later proposed two familiesof structural join algorithms, i.e., tree-merge and 

stack-basedstructural joins, as primitives forXMLtwig query processing.In 2002, Bruno et al. [5] 

first proposed the holistic twig joinapproach for XML twig queries in order to overcome 

thedrawback of structural joins that usually generate large setsof unused intermediate results. 

Bruno et al. designed the firstholistic twig join algorithm, named TwigStack, which isoptimal for 

twigs with only AD edges (but not with PCedges). The work of Lu et al. [9] aimed at making up 

this flawand they presented a new holistic twig join algorithm,TwigStackList, in which a list 

structure is used to cachelimited elements in order to identify a larger optimal queryclass. Chen 

et al. [6] studied the relationship betweendifferent data partition strategies and the optimal 

queryclasses for holistic twig joins. Lu et al. [10] proposed a newlabeling scheme, called 

extended Dewey, and an interestingalgorithm, named TJFast, for efficient processing of 

XMLtwig patterns. Unlike all previous algorithms based on regionencoding, to answer a twig 

query, TJFast only needs toaccess the labels of the leaf query nodes. The result of Lu et al. 

[10] Includes enhanced functionality (can process limitedwildcard), reduced disk access, and 

increased total queryperformance. The same group [11] also studied efficientprocessing for 

ordered XML twig patterns using their regionencoding scheme. 
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 In an ordinary twig, the multiple sibling nodes under acommon parent node automatically 

signify the AND logicrelationship among them, and all previously proposedholistic twig join 

algorithms already support this impliedAND logic in their implementation schemes. Users 

wouldtake all the three commonly used logical predicates, AND, OR, and NOT, as granted 

facilities in formulating their XMLqueries and thus would expect full support from a 

queryengine for unlimited use of all these predicates in their XMLqueries. Jiang et al. [7] made 

the first effort towardincorporating support for OR predicates into the holistictwig join approach 

pioneered by Bruno et al. [5], and Yu et al.[13] made effort for supporting NOT predicates in 

XML twigqueries. Jiang et al. [7] presented an interesting frameworkfor holistic processing of 

AND/OR-twigs based on theconcept of OR-block. With resort to OR-blocks, an AND/OR-twig 

is transformed to an AND-only twig carryingspecial OR-blocks. This work is inspiring to us—

we find it ispossible to substantially extend their framework so that theNOT logic can be 

seamlessly incorporated. Nevertheless,this work is not straightforward, but requires 

creativereinvention of the “wheels.” In order to harness thecomplexity of B-twigs, we resort to 

B-twig normalization;then based on normalized B-twigs, we are able to extend andadapt the OR-

block concept with new supporting mechanismsfor handling the NOT predicates involved in B-

twigs. 

 The recent publication of Xu et al. [12] proposed anotherinteresting algorithm that claims 

to be able to efficientlycompute the answers to XML queries without holisticallycomputing the 

twig patterns—the answers obtained containindividual elements corresponding to designated 

output query nodes. So basically this work does not belong to thecategory of holistic twig join 

algorithms. But what isinteresting of their work [12] is the proposed path-partitionedelement 

encoding scheme, which bears efficiency potential andmay be considered in the future for further 

improving theperformance of holistic B-twig pattern matching. 

 

3 PRELIMINARIES 

In this section, we first address the data model issue,B-twig representation and 

normalization, and then introducethe notations and operations needed in our 

subsequentdiscussion. 
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3.1 Data Model 

We adopt the general perspective [5] that an XML databaseis a forest of rooted, ordered, 

and labeled trees, each nodecorresponds to a data element/value, and each edgerepresents an 

element-sub element or element-value relation.The order among sibling nodes implicitly defines 

atotal order on the tree nodes. Node labels are important forefficient processing of a twig pattern 

as properly designednode labels may leave out the necessity of accessing thenode contents 

during query evaluation. This is especiallytrue with twig pattern matching, which is at the core 

ofXML query processing. Node labels typically encode theregion information of data elements 

that reflects the relativepositional relationships among the elements in the sourcedata file. We 

assume a simple encoding scheme using atriplet region code—(start; end; level)—which is 

assigned toeach data element in a tree database as a label. Whenmultiple documents are present, 

the document-id is added tothe labels to differentiate the documents. Region code canbe 

conveniently obtained through preorder document-treetraversing. 

 

3.2 Tree Representation 

Each XML query implies a twig pattern, small, or large. Thesmallest twig may contain 

just a single node, but a typicaltwig usually comprises a number of nodes. The target ofour 

investigation is the B-twigs that allow arbitrarycombination of AND, OR, and NOT predicates, 

of whicheach may have multiple occurrences. Each B-twig mayconsist of two general categories 

of nodes: ordinary querynodes standing for element types (or tags) and specialconnective nodes 

denoting logical predicates—AND, OR, andNOT. More specifically, we represent a B-twig 

using thefollowing specific types of nodes: 

 QNode. An ordinary query node, associates to an element type (or tag name) in a tree 

database. For programmatic purposes (as in [7]), a QNode records its location step axis 

“//” or “/” for edge test, and a tag name for node test. Therefore, the content of a QNode 

takes the general format of “/tag” or “//tag.” A non-root QNode in a B-twig may be 

conveniently called a d-child or c-child (of its parent) depending on whether a “//” or a 

“/” symbol is recorded in the QNode’s content (Notice that in the sequel we may not 

always show the location step axes in ourillustrations when the emphasis is onsomething 

else). 
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 ANode. An AND predicate node, always takes the text “AND” as its content. It connects 

two or morechild sub trees through the AND logic. 

 ONode. An OR predicate node, always takes the text“OR” as its content. It connects two 

or more childsub trees through the OR logic. 

 NNode. The NOT predicate node, always takes thetext “NOT” as its content. 

Functionally, a NNodenegates the predicate denoted by the sub tree 

immediatelyunderneath it. A NNode is commonlycombined with the node underneath it 

in the B-twig,forming a composite node. We have the followingthree kinds of composite 

nodes related to NOT 

 ZNode. An XOR predicate node, always takes the text “XOR” as its content. It connects 

two or morechild sub trees through the XOR logic. 

Fig. 1. Example twigs involving NOT 

-NQNode: the combined form of a NOT nodewith a subsequent QNode child (such 

combinationjust causes the representation of a B-twigmore compact, and does not affect the 

semanticsor interpretation of the twig pattern). Forexample, in the query Q1 (shown in Fig. 1), 

theNOT and the subsequent child QNode “/B” canbe combined and replaced by a single 

NQNodewith content “ /B.” 

- NANode. The combined form of a NOT nodewith  

its sole ANode child. 

- NONode. The combined form of a NOT nodewith  

its sole ONode child. 

-NZNode. The combined form of a NOT node with  

its sole ZNode child. 
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We could also have the fourth type of composite nodethat represents a NOT node 

combined with another (child)NOT node (i.e., a double negation node that could benamed 

NNNode). As the net effect of double negations isthe same as no negation at all, double negation 

nodes are notactually used in our representation for B-twigs. From nowon, we generally refer to 

QNodesand NQNodes as querynodes, and other (plain or composite connectives) nodes in aB-

twig as no query nodes. 

 With the above mechanisms introduced, our representationscheme for B-twigs is 

apparently a superset of what canbe represented by the scheme adopted by Jiang et al. [7] for 

thesimpler AND/OR-twigs. ConsideringNOTas a new elementadded to B-twigs (comparing to 

the AND/OR-twigs studiedin [7]), we next illustrate the four typical cases that the 

NOTpredicates may appear in an XML twig query. The followingfour queries exemplify these 

four representative cases: 

Q1. A[NOT/B/C] 

Q2. A[NOT (/B AND/C)]//D 

Q3. A[NOT (/B OR/C)]//D 

Q4. A[NOT/B[NOT/C]] 

Q5. A[NOT[/B XOR/C]] 

 

3.3 Edge test Algorithm 

 The main structure of function edgeTest (andfunction nEdgeTestas well) is a while loop, 

which at the first glimpse appears unnecessary, but (at lines 7 and 8, see Fig.2) brings an 

important optimization—fast skipping noncontributingelements in stream Tq until the cursor 

moves over therange of the parent element e. (This “fast skipping” has theeffect of instant 

performance optimization, otherwise thosenoncontributing elements will stay in their streams 

causingextra iterations and consuming extra CPU time.). The location step axis is obtained from 

the content of the childquery node. The implementation of function nEdgeTest relies on 

repeatedcalls to function edgeTest (see Fig.3). The implementation offunction ONodeTest (see 

Fig. 4) almost straightforwardlyfollows Definition. It is based on edgeTest ,nEdgeTest,and yet 

another function, hasExtension, that realizes. 

 

FUNCTION edgeTest(e,q) 
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1:  while not end(Cq) do 

2:     if e.start<Cq →start and e.end>Cq→ end 

then 

3: if q.axis==’//’ then 

4: return true 

5: else if e.level == Cq → level -1 then 

6:     return true 

7:     if Cq→end<e.end then 

8: Cq→advance() 

9:     else 

10:     break 

11:  end while 

12:  return false 

Fig.2. Function edgeTest. 

Holistic twig joins typically disallow backtracking ofstream cursors to guarantee linear 

time complexity. Noticethat the evaluation of a NOT predicate involved in a B-twigrequires 

disproving all elements in the negated stream(associated to the query node negated by the 

NOTpredicate). This seems to imply that we need to scan tothe very end of the negated stream to 

disprove all elements,and then backtrack the stream cursor to get ready forevaluating the 

subsequent parent elements. In fact, suchbacktracking can be avoided.  

 

FUNCTION nEdgeTest(e,q) 

1:   while not end(Cq) do 

2:  if edgeTest(e,q) = = true then 

3:  return false 

4: else if Cq→end<e.end then 

5: Cq→advance() 

6:     else 

7:        break 

8:  end while 

9:  return false 
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Fig.3. Function nEdgeTest 

Let’s exemplify this: assumingwe are processing the B-twig sub expression X NOT Y, 

andelements xi and yj are currently under the cursor of theirrespective streams, TX and TY, there 

are two cases toconsider now: 1) yj happens to fall within the region of xi,this immediately 

disproves xi and the evaluation immediatelyreturns; 2) yj is not in the range of xi, this leads to 

two possible subcases: a) yj is ahead of xi—then we just advancecursor CY and start the next 

iteration to evaluate with thenext element following yj; b) yj falls behind xi, this isenough to 

qualify xi, since all subsequent elements after yj(if any) can only be farther away from the 

coverage of xidue to the sortends of the elements in stream TY. In allcases, advancing of the 

stream cursor TYnever goes beyondthe range covered by xi, and backtracking is never 

needed.The code in Fig.4 embodies the idea discussed above. 

 

FUNCTION ONodeTest(e,n) 

1: for each ni in P(n) do 

2:  if isLeaf(ni) and isQNode(ni) 

3:  replace ni by edgeTest(e, ni) 

4: else if isLeaf(ni) and isNQNode(ni) 

5:  replace 

ni by(edgeTest(e, ni) andhasExtension(ni)) 

6: else /* ni is a non leafQNode 

7:  replace ni by edgeTest(e, ni) 

8: end for 

9:  evaluate P (n) and return the result 

Fig.4. Function ONodeTest 

4 AHOLISTIC B-TWIG JOIN ALGORITHM 
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With the supporting mechanisms set forth in the precedingsections, we now present our 

novel holistic B-twig joinalgorithm, BTwigMerge, in this section. 

4.1 BTwigMerge: The Main Algorithm 

The structure of our main algorithm, BTwigMerge, asshown in Fig.5, is not much 

different from most otherholistic twig join algorithms [5], [6], [8], [7], [9], [10], [11],[13]. It is a 

merge-based, two-phase algorithm. However, aswe confront a different, more complex problem 

of B-twigsthat was not considered by previous holistic algorithms, theprocessing strategy of our 

BTwigMerge must be accordingly different. The difference mainly lies in the key supporting 

function, GetQNode(detailed in the next 

Section). In addition to feeding the main algorithm the nextquery node to be processed, our 

GetQNode functionthoroughly investigates the candidacy of the elements inthe input streams and 

guarantees that for the next QNodereturned to the main algorithm the current element in 

theassociated stream is fully qualified, i.e., the element satisfiesall relevant criteria (including all 

predicates and edge tests).Functionally, algorithm GTwigMerge [7] is the closest toour 

BTwigMerge, but at the main algorithm level,BTwigMerge is more concise: with each valid 

query node qreturned by GetQNode (the validness is checked at line 3, seeFig.5), BTwigMerge 

cleans up relevant stacks (lines 6 and7), moves the element associated to q from stream to stack 

if itis not an output leaf (at lines 8 to 10), otherwise (q is an outputleaf) outputs the path solutions 

currently on the stacks(lines 9 and 10). It is worth to point out that BTwigMerge doesnot 

explicitly process OR and any other predicates at themain algorithm level (differing from 

GTwigMerge [7]).Instead, all critical processing logics are encapsulated inthe key supporting 

function, GetQNode, and other lowerlevel supporting functions. GetQNode also checks 

whethereach involved PC or AD edge is, respectively, satisfied by thestream head element 

associated to q that is to be returned tothe main algorithm as the next QNode for 

processing.Therefore, our BTwigMerge achieves matching optimalitynot only with AD edges but 

also with PC edges (this is instrong contrast to all previous holistic algorithms 

includingTwigStack [5] and GTwigMerge [7], etc.). 

 

FUNCTION ORBlockMax(n) 

1: q0=0 /* refers to QNode */ 

2: if  isNQNode(n) then 
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3   return 0 

4: else if isNQNode(n) and isLeaf(n) then 

5:  return n 

6: else 

7:      if isQNode(n) then 

8:       q0= n 

9:       for each niϵ  children (n) do 

10: qi = ORBlockMax(ni) 

11:     end for 

12:    if isONode(n) then 

13:  return argminqi{ei,start} 

14:    else 

15: return argmaxqi{ei,start} 

  Fig.6. Function ORBlockMax. 

 

Some important features of BTwigMerge are highlightedas follows: 

1. BTwigMerge receives (from GetQNode) either avalid output QNode q or an invalid QNode, 

denotedby null. An invalid QNodeis typically generated byGetQNode when a non-top level 

recursive call intothis function fails to find a QNode associated with afully qualified 

element. But since noncontributingelements encountered during this process have 

beenskipped, the main algorithm quick jumps to its nextiteration (at line 4) to start a new 

call to GetQNodefor getting the next valid QNode. 

2. No stacks are allocated for no outputQNodes, norfor any output leaves (QNodes) since the 

contributingelements corresponding to an output leaf can bedirectly grabbed from the 

associated stream foroutput. 

3. GetQNode performs specific edge test (PC or AD),which renders both I/O and CPU 

optimality for bothAD and PC edges involved in a B-twig. 

4. “Stack cleaning” is needed in BTwigMerge solelybecause each time after outputting path 

solutions,some elements on the stacks may become irrelevantfor future path solutions and 

must be cleaned out.(In most prior algorithms such as TwigStack, stackcleaning is required 
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to get rid of those noncontributingelements that may have been tentatively addedto the 

stacks but are actually noncontributing.) 

5. BTwigMerge does not explicitly (at the mainalgorithm level) deal with any AND/OR/NOT 

predicates,nor with any no outputQNodes. 

4.2 GetQNode: The Key Supporting Algorithm 

GetQNode is an essential subroutine which is called by themain algorithm BTwigMerge 

to decide the next QNode forprocessing. It is GetQNode that guarantees that the streamhead 

element associated to the returned QNode is part ofthe final output since all the relevant 

predicates (if any) arethoroughly checked by GetQNode or its lower levelprimitive subroutines 

such as edgeTest, nEdgeTest,ONodeTest, and hasExtension, etc. 

While feeding BTwigMerge with the next QNode to beprocessed, some elements on the 

stream under considerationmay be found noncontributing to the final answer andthus should be 

skipped right away. The term, largestthreshold value, introduced by Jiang et al. [7] refers to 

thestart label of a sub element emax of another element, say, esuch that emax maximizes the start 

label among all theoffspring elements of e. Such a threshold value can be usedto skip e and all its 

successors if their end label are smallerthan this threshold value. It still makes sense to carry 

outthis type of optimization for B-twig join, but we need toredefine the mechanism to fit the 

particular need of B-twigs. 

 

FUNCTION GetQNode(q) 

1:  if isLeaf(q) then 

2: return q 

3:  for each qi ϵ children (q) do 

4: q0= GetQNode(qi) 

5:       if q0 ≠ qi   and isOutNode(q0) then 

6:      return q0 

7:  end for 

8:   qmax= getMaxQChild(q) 

9:   while Cq → start <Cqmax →start do 

10:  Cq→advance() 

11:  end while 

12: qmin= argminqi{ Cq → start}, qi ϵ  children (q)  

13:  while Cq → start <Cqmin →start do  
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14:  if hasExtension(q) and isOutNode(q) then 

15:  return q 

16: else 

17:   Cq→advance() 

18:  end while 

19:  if hasExtension(qmin) and isOutNode(qmin) 

20: return qmin 

21:  else 

22:   Cqmin→advance() 

23:  if end(q) then 

24: return null 

25:  else 

26:  return GetQNode(q)  

Fig.7. Function GetQNode 

 

The largest threshold value is computed by a specialsupporting function, called 

ORBlockMax(n), in [7]. Weextend this function for our purpose as shown in Fig.6,which 

conforms to our revised notion for OR-blocks. 

Understanding the structural features of OR-blocks innormalized B-twigs is the key to 

understanding how ourORBlockMax function works. This algorithm traverses thestructure of an 

OR-block and computes the maximumthreshold value to help effectively skip disqualified 

elementsin the parent stream. Line 1 initializes the variable q0to a special (imaginary) query 

node, denoted by 0, which isalways associated to a special (imaginary) element identifiedby the 

region code (0; 0; 0). When the input node is anNQNode, line 3 returns this special query node 

0(associated to the imaginary element (0; 0; 0). Variable q0is reinitialized at line 8 to n, and is 

used at line 16 whenchoosing the qmax from all the QNodes qi under considerationsuch that 

qmax gives the maximal start value. At line 13,function argminqi(ei.start) selects qmin from all 

theQNodes qi under consideration such that qmin has theminimal start value. Notice that at this 

point (line 13), theimaginary element with region code (0, 0, 0) is excluded because all NQNodes 

are irrelevant to the purpose offunction ORBlockMax—i.e., to help skip disqualifiedelements in 

the parent stream.The implementation of function GetQNode is shown inFig.7. The QNodeqx 

returned by GetQNode(q) can be oneof the following two cases: 

FUNCTION getMaxQChild(q) 
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1:  for each ni ϵ  children (q) do 

2:      if  isQNode(ni) 

3: qi =ni 

4:       else if isNQNode(ni) then 

5: qi =0 

6:       else 

7: qi =ORBlockMax(ni) 

8:  end for 

9:  return argmaxqi{ Cq → start}, for qi 

Fig.8. Function getMaxQChild. 

1) qx= null (here null denotes aninvalid query node), signifying to the main algorithm 

toimmediately start another call to GetQNode for quicklygetting the next valid QNode if the 

streams are notexhausted yet; 2) qx is a valid output QNode—this is thedominating case, 

similarly handled as in all other holistictwig join algorithms. Comparing with GTwigMerge [7], 

themost related holistic join algorithm to BTwigMerge, thestructure of our main algorithm is 

more succinct:we pushed all important tests—including AD and PC edgetests, and tests on any 

AND/OR/NOT predicate—all downto the core subroutine, GetQNode, or its lower levelprimitive 

supporting functions. The advantage is early skipping of disqualified elements in streams, 

leading toimproved algorithm performance. 

In subroutine GetQNode(q), the information provided bygetMaxQChild(q) (line 8 in 

Fig.7) is used to skipdisqualified elements in stream Tq. Unlike its counterpartin GTwigMerge 

[7], our getMaxQChild(q) (see Fig.8)considers NQNodes in addition which do not exist in 

thesimpler AND/OR-twigs that GTwigMerge was designed for. 

 

4.3 Cost Analysis of BTwigMerge 

We now analyze the I/O and CPU cost of our algorithmBTwigMerge. For ease of 

presentation, given B-twig query Q,we first introduce the following parameters: 

 [QNodes] is the total number of QNodes in Q. 

 [NQNodes] is the total number of NQNodes in Q. 

 Query size Qj = [QNodes] + [NQNodes]. Noticehere we do not count other logical 

predicate nodestoward the query size.  
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  [Input] stands for the total size of all the inputstreams relevant to query Q. 

 [List] stands for the average stream length. 

 [Output] stands for the total count of the dataelements included in all output B-twig 

instancesproduced for query Q. 

In terms of the set of twig patterns that can be processed,BTwigMerge is a “superset” of 

GTwigMerge andGTwigMerge is a “superset” of TwigStack. At the main algorithm level, the 

three algorithms share great similarity.The cost analysis methods are also similar. So, in 

thefollowing, we only provide a compact analysis for the I/Oand CPU cost of BTwigMerge. 

The I/O cost of BTwigMerge consists of three parts: theI/O cost for accessing all the relevant 

input stream elementsand the I/O cost for dealing with the intermediate pathsolutions plus the 

I/O cost for outputting the final twigsolutions. Since in BTwigMerge, we always advance 

thestream cursors and never backtrack, the first part of the I/Ocost is the total size of all relevant 

input streams. For thesecond part, since BTwigMerge is optimal with both ADand PC edges—

i.e., it never produces useless intermediatepath solutions, the I/O cost of this part is two times 

(for firstoutput and then input) of the total final output size, i.e.,2· [Output]. And the third part 

(for outputting the finalresults), of course, is [Output]. All together, the total I/Ocost for 

BTwigMerge is the sum of the above three parts.We therefore have the following equations 

regarding the I/O cost of BTwigMerge: 

I/Ocost=([QNodes]+[NQNodes]+[ZQNodes])· 

[List]+3· [Output] 

                  = [Q] · [List]+3  · [Output] 

                  = [Input] +3 · [Output]: 

The CPU cost analysis for BTwigMerge is analogous. TheCPU cost also consists of three 

parts. The first part is the timespent on computing the path solutions, the second part is thetime 

spent on dealing with the obtained intermediate pathsolutions (output, input, and merging), and 

the third part ison outputting the final twig solutions. The main structure ofBTwigMerge is a loop 

that repeats no more than [Input] times,which is the total number of elements in all the input 

streamsbecause noncontributing elements are skipped at line 10, 17,and 22 of GetQNode (see 

Fig. 13) or by the optimizationrendered by the two primitive functions, edgeTest andnEdgeTest 

(see Figs. 8 and 9, respectively). So the first part ofthe CPU cost is linear to the input size. The 

second partdepends on how many intermediate path solutions areproduced and how many of 
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them are going to be merged toform the final output twig solutions. As BTwigMerge doesnot 

produce any unused intermediate path solutions (itactually does not push any noncontributing 

elements ontoany stack), the second part of the cost is linear to and solelydecided by the output 

size [Output]. And the third part ofcourse is also linear to the output size. Added together, forthe 

overall CPU cost of BTwigMerge, we have exactly thesame result as we have for the I/O cost 

(cost equationsomitted). It is worth to point out that query size [Q] in CPUcost is counted 

slightly differently from that in I/O cost: forthe former, [Q] counts the duplicated query nodes 

caused bynormalization, but for I/O cost, it does not becauseduplicatequery nodes do not cause 

extra physical I/O.The above cost analysis results shows that ourBTwigMerge has both optimal 

I/O cost and optimal CPUcost for normalized B-twigs with both AD and PC edges.Our 

experimental study provides empirical evidences tofurther support this conclusion. 

 

5 EXPERIMENTS 

In this section, we present the experiment results. As ourBTwigMerge is the only 

algorithm of its kind—designed forholistic B-twig pattern matching, there does not exist a 

realcompetitor to compare with. In this case, one plausiblebaseline to compare with is a 

decomposition-basedapproach. A decomposition-based approach first splits an input B-twig at 

everypredicate node into a series of subtwigs, then separatelycomputes the partial solutions to the 

subtwigs, and finallycombines the obtained partial solutions to form the wholesolutions to the 

original B-twig. Such a decompositionbasedapproach suffers severe performance 

disadvantagethat Jiang et al. [7] had empirically proven with a subclassof B-twigs years ago. For 

more general B-twigs, the problemof decomposition-based approach can only become worse.So 

we have no intention to empirically reprove theconclusion of Jiang et al. [7] at the scale of full 

B-twigs,instead, we comparatively study the performance of ouralgorithm and other related 

algorithms on various commonsubclasses of B-twigs. 

As the first holistic twig join algorithm, TwigStack [5] isdesigned for simple AND-only 

twigs. In terms of thecategories of twigs being processed, GTwigMerge [7] generalizesTwigStack 

and is a superset of TwigStack—capablefor AND/OR-twigs; TwigStackList: [13] also 

generalizesTwigStack but from a different aspect and thus is a superset ofTwigStack [5] as well—

capable for AND/NOT-twigs; ourBTwigMerge significantly extends the approach embodied 

inGTwigMerge and becomes a superset of both GTwigMergeand TwigStackList:—capable for 
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full B-twigs, i.e., AND/OR/NOT-twigs. The theme of our experimental study thus isset on 

comparing BTwigMerge, respectively, with thesepredecessor algorithms with regard to a 

common subset oftwig queries that they are all (or both ) capable of dealing with. 

 

5.1 Experimental Setup 

Before proceeding to the details of our experiment study,we first address a few related issues 

about this study.Platform setup. The platform of our experimentscontains an Intel Core 2 DUO 

2.2 GHz running WindowsXP System with 4 GB memory and a 75 GB hard disk. JavaSE is the 

software platform on which these algorithms areimplemented and tested. The various data sets 

used for thisstudy are kept as external files on the hard disk.Convenientplatform, JUnit 1.4 was 

used for concise timingof these algorithms on test queries. 

Data preparation. To avoid potential bias of using asingle data set, we choose three popular 

XML data sets forthis study. The first data set is an XMark data set [3] storedin a single XML 

file. This data set takes roughly 100 MB,containing about 100 thousands elements (or nodes). 

Thesecond data set is a generated one by Stylus XML Generator[1] using a given XML Schema. 

Stylus XML Generatorallows users to specify the expected structure and size ofasa XML data 

via separate XML Schema files. For thispurpose, we carefully designed an XML schema with 

variedtree structures to avoid biased results. 

 

6. SUMMARY 

Holistic twig joins are critical operations for XML queries.The three basic logical 

predicates, AND, OR, and NOT, arenatural expression mechanisms that people would desire 

toapply to general XML queries. However, all previouslyproposed holistic twig join algorithms 

failed to provide anintegral solution for efficient and uniform processing of Btwigqueries (with 

arbitrary combination of these logicalpredicates) in a single algorithmic framework. 

Consequently,given a general B-twig query, all prior holisticalgorithms become inapplicable and 

useless. In this paper,we presented a novel approach for holistic computing of Btwigpatterns and 

described an original algorithm, calledBTwigMerge, which is the first of its kind—

holisticcomputing of a more general class of twig patternsrepresented by B-twigs. The second 

distinctive feature ofBTwigMergeis that it gracefully extends the I/O and CPUoptimality to twigs 

with PC edges as well. 
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In order to reduce the intrinsic complexity in arbitrary Btwigs,we proposed B-twig 

normalization that successfullysorts out the arbitrary combination of the logical predicatesin B-

twigs. We designed a valid procedure to automaticallytransform input B-twigs into normalized 

forms. Thenormalized B-twigs are then sent to BTwigMergethatembodies our holistic twig join 

strategy and containsnumerous novel supporting mechanisms. 

We have done analytical and experimental study withregard to the validity and 

performance of our approach andits accompanying algorithms, and concluded that 

ourBTwigMergeis so far the most powerful and most efficientholistic twig join algorithm—the 

sole one designed for Btwigs,with optimal I/O and optimal CPU on twigs witharbitrary AD 

and/or PC edges. As future work, thefollowing is on our agenda: Implementation of XOR 

andefficiency increase by Indexing method. 
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